Streaming Analytics Comparison of Open Source Frameworks, Products, Cloud Services

Posted in Analytics, Big Data, Business Intelligence, Cloud, Hadoop on November 15th, 2016 by Kai Wähner

In November 2016, I am at Big Data Spain in Madrid for the first time. A great conference with many awesome speakers and sessions about very hot topics such as Apache Hadoop, Spark Spark, Streaming Processing / Streaming Analytics and Machine Learning. If you are interested in big data, then this conference is for you! My two talks:

  • How to Apply Machine Learning to Real Time Processing” (see slides and video recording from a similar conference talk).
  • Comparison of Streaming Analytics Options” (the reason for this blog post; an updated version of my talk from JavaOne 2015)
Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Streaming Analytics with Analytic Models (R, Spark MLlib, H20, PMML)

Posted in Analytics, Big Data, Business Intelligence, Hadoop, In Memory, NoSQL on March 3rd, 2016 by Kai Wähner

In March 2016, I had a talk at Voxxed Zurich about “How to Apply Machine Learning and Big Data Analytics to Real Time Processing”.

Kai_Waehner_at_Voxxed_Zurich

Finding Insights with R, H20, Apache Spark MLlib, PMML and TIBCO Spotfire

Big Data” is currently a big hype. Large amounts of historical data are stored in Hadoop or other platforms. Business Intelligence tools and statistical computing are used to draw new knowledge and to find patterns from this data, for example for promotions, cross-selling or fraud detection. The key challenge is how these findings can be integrated from historical data into new transactions in real time to make customers happy, increase revenue or prevent fraud.

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Comparison of Stream Processing Frameworks and Products

Posted in Analytics, Business Intelligence, Hadoop, In Memory on October 25th, 2015 by Kai Wähner

See how products, libraries, and frameworks that full under ‘streaming data analytics’ use cases are categorized and compared.

Streaming Analytics processes data in real time while it is in motion. This concept and technology emerged several years ago in financial trading, but it is growing increasingly important these days due to digitalization and Internet of Things (IoT). The following slide deck from a recent talk at a conference covers:

  • Real world success stories from different industries (Manufacturing, Retailing, Sports)
  • Alternative Frameworks and Products for Stream Processing
  • Complementary Relationship to Data Warehouse, Apache Hadoop, Statistics, Machine Learning, Open Source R, SAS, Matlab, etc.
Tags: , , , , , , , , , , , , , , , , , , , , ,