“Hadoop and Data Warehouse (DWH) – Friends, Enemies or Profiteers? What about Real Time?” – Slides (including TIBCO Examples) from JAX 2014 Online

Slides from my talk “Hadoop and Data Warehouse (DWH) – Friends, Enemies or Profiteers? What about Real Time?” at JAX 2014 (Twitter #jaxcon) in Mainz are online. JAX is a great conference with interesting topics and many good speakers!

Content (Data Warehouse, Business Intelligence, Hadoop, Stream Processing)

Big data represents a significant paradigm shift in enterprise technology. Big data radically changes the nature of the data management profession as it introduces new concerns about the volume, velocity and variety of corporate data. New business models based on predictive analytics, such as recommendation systems or fraud detection, are relevant more than ever before. Apache Hadoop seems to become the de facto standard for implementing big data solutions. For that reason, solutions from many different vendors emerged on top of Hadoop.

But hold on… Companies have spent a lot of many to implement a data warehouse for the same reason in the last decades. Both, Apache Hadoop and data warehouse were invented to store and analyze big data. This session explains the different architectural and technical concepts of Apache Hadoop and a data warehouse. The following questions will be answered: When to use which alternative? Does a data warehouse even have a future at all? Or how can we combine both alternatives?

However, Hadoop and a Data Warehouse cannot solve every big data problem. Complex event processing and real-time analytics have to be solved in another way. So, in-memory computing and streaming platforms are good alternatives or complements to Hadoop for processing and analyzing big data. For that reasons, an almost unimaginable number of solutions for big data emerged on the market. This session shows and compares the most important concepts and solutions for processing and analyzing big data, and discusses how they complement each other.

TIBCO Products (Spotfire, StreamBase, BusinessEvents, BusinessWorks) and Real World Examples

I discuss a good big data architecture which includes Data Warehouse / Business Intelligence + Apache Hadoop + Real Time / Stream Processing. Several real world example are shown. TIBCO offers some very nice products for realizing these use cases, e.g. Spotfire (Business Intelligence / BI), StreamBase (Stream Processing), BusinessEvents (Complex Event Processing / CEP) and BusinessWorks (Integration / ESB). TIBCO is also ready for Hadoop by offering connectors and plugins for many important Hadoop frameworks / interfaces such as HDFS, Pig, Hive, Impala, Apache Flume and more.

Slides

Here are the slides:

Click on the button to load the content from www.slideshare.net.

Load content

As always, I appreciate feedback and discussions.

Kai Wähner

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

Real-Time Data Sharing in the Telco Industry for MVNO Growth and Beyond with Data Streaming

The telecommunications industry is transforming rapidly as Telcos expand partnerships with MVNOs, IoT platforms, and…

5 hours ago

Fraud Detection in Mobility Services (Ride-Hailing, Food Delivery) with Data Streaming using Apache Kafka and Flink

Mobility services like Uber, Grab, and FREE NOW (Lyft) rely on real-time data to power…

2 days ago

Virta’s Electric Vehicle (EV) Charging Platform with Real-Time Data Streaming: Scalability for Large Charging Businesses

The rise of Electric Vehicles (EVs) demands a scalable, efficient charging network—but challenges like fluctuating…

1 week ago

Apache Kafka 4.0: The Business Case for Scaling Data Streaming Enterprise-Wide

Apache Kafka 4.0 represents a major milestone in the evolution of real-time data infrastructure. Used…

2 weeks ago

How Apache Kafka and Flink Power Event-Driven Agentic AI in Real Time

Agentic AI marks a major evolution in artificial intelligence—shifting from passive analytics to autonomous, goal-driven…

2 weeks ago

Shift Left Architecture at Siemens: Real-Time Innovation in Manufacturing and Logistics with Data Streaming

Industrial enterprises face increasing pressure to move faster, automate more, and adapt to constant change—without…

3 weeks ago