Categories: EAIESBSOA

Enterprise Integration Patterns (EIP) Revisited in 2014

Today, I had a talk about “Enterprise Integration Patterns (EIP) Revisited in 2014” at Java Forum Stuttgart 2014, a great conference for developers and architects with 1600 attendees.

Enterprise Integration Patterns

Data exchanges between companies increase a lot. Hence, the number of applications which must be integrated increases, too. The emergence of service-oriented architectures and cloud computing boost this even more. The realization of these integration scenarios is a complex and time-consuming task because different applications and services do not use the same concepts, interfaces, data formats and technologies.

Originated and published over ten years ago by Gregor Hohpe and Bobby Woolf,  Enteprise Integration Patterns (EIP) became the world wide de facto standard for describing integration problems. They offer a standardized way to split huge, complex integration scenarios into smaller recurring problems. These patterns appear in almost every integration project. Most developers already have used some of these patterns such as the filter, splitter or content-based-router – some of them without being aware of using EIPs. Today, EIPs are still used to reduce efforts and complexity a lot. This session revisits EIPs and gives an overview about the status quo.

Open Source, Apache Camel, Talend ESB, JBoss, WSO2, TIBCO BusinessWorks, StreamBase, IBM WebSphere, Oracle, …

Fortunately, EIPs offer more possibilities than just be used for modelling integration problems in a standardized way. Several frameworks and tools already implement these patterns. The developer does not have to implement EIPs on his own. Therefore, the end of the session shows different frameworks and tools available, which can be used for modelling and implementing complex integration scenarios by using the EIPs.

Slides

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

10 FinTech Predictions That Depend on Real Time Data Streaming

Financial services companies are moving from batch processing to real time data flow. A data…

2 hours ago

Top Trends for Data Streaming with Apache Kafka and Flink in 2026

Each year brings new momentum to the data streaming space. In 2026, six key trends…

1 week ago

The Data Streaming Landscape 2026

Data streaming is now a core software category in modern data architecture. It powers real-time…

2 weeks ago

Life as a Lufthansa HON Circle Member: Inside the Ultimate Frequent Flyer Status

Reaching Lufthansa HON Circle status was both a personal milestone and a significant financial investment.…

2 weeks ago

CARIAD’s Unified Data Platform: A Data Streaming Automotive Success Story Behind Volkswagen’s Software-Defined Vehicles

The automotive industry transforms rapidly. Cars are now software-defined vehicles (SDVs) that demand constant, real-time…

3 weeks ago

Data Streaming Meets Lakehouse: Apache Iceberg for Unified Real-Time and Batch Analytics

Apache Iceberg is gaining momentum as the open table format of choice for modern data…

4 weeks ago