Case Study: From a Monolith to Cloud, Containers, Microservices

The following shows a case study about successfully moving from a very complex monolith system to a cloud-native architecture. The architecture leverages containers and Microservices. This solve issues such as high efforts for extending the system, and a very slow deployment process. The old system included a few huge Java applications and a complex integration middleware deployment.

The new architecture allows flexible development, deployment and operations of business and integration services. Besides, it is vendor-agnostic so that you can leverage on-premise hardware, different public cloud infrastructures, and cloud-native PaaS platforms.

The session will describe the challenges of the existing monolith system, the step-by-step procedure to move to the new cloud-native Microservices architecture. It also explains why containers such as Docker play a key role in this scenario.

A live demo shows how container solutions such as Docker, PaaS cloud platforms such as CloudFoundry, cluster managers such as Kubernetes or Mesos, and different programming languages are used to implement, deploy and scale cloud-native Microservices in a vendor-agnostic way.

Key Takeaways

Key takeaways for the audience:

– Best practices for moving to a cloud-native architecture

– How to leverage microservices and containers for flexible development, deployment and operations

– How to solve challenges in real world projects

– Understand key technologies, which are recommended

– How to stay vendor-agnostic

– See a live demo of how cloud-native applications respectively services differ from monolith applications regarding development and runtime

Slides and Video from Microservices Meetup Mumbai

Here are the slides and video recording. Presented in February 2017 at Microservices Meetup Mumbai, India.

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

How Data Streaming Powers AI and Autonomous Networks in Telecom – Insights from TM Forum Innovate Americas

AI and autonomous networks took center stage at TM Forum Innovate Americas 2025 in Dallas.…

2 days ago

Telecom OSS Modernization with Data Streaming: From Legacy Burden to Cloud-Native Agility

OSS is critical for service delivery in telecom, yet legacy platforms have become rigid and…

4 days ago

Amazon MSK Forces a Kafka Cluster Migration from ZooKeeper to KRaft

The Apache Kafka community introduced KIP-500 to remove ZooKeeper and replace it with KRaft, a…

6 days ago

Streaming the Automotive Future: Real-Time Infrastructure for Vehicle Data

Connected vehicles are transforming the automotive industry into a software-driven, data-centric ecosystem. While APIs provide…

2 weeks ago

How Global Payment Processors like Stripe and PayPal Use Data Streaming to Scale

This blog post explores how leading payment processors like Stripe, PayPal, Payoneer, and Worldline are…

3 weeks ago

The Future of Data Streaming with Apache Flink for Agentic AI

Agentic AI is moving into production. Autonomous, tool-using, goal-driven systems that need real-time data and…

4 weeks ago