Cloud Native Middleware Microservices – 10 Lessons Learned (O’Reilly Software Architecture 2017, New York)

I want to share my slide deck and video recordings from the talk “10 Lessons Learned from Building Cloud Native Middleware Microservices” at O’Reilly Software Architecture April 2017 in New York, USA in April 2017.

Abstract
Microservices are the next step after SOA: Services implement a limited set of functions; services are developed, deployed, and scaled independently; continuous delivery automates deployments. This way you get shorter time to results and increased flexibility. Containers improve things even more, offering a very lightweight and flexible deployment option.

In the middleware world, you use concepts and tools such as an enterprise service bus (ESB), complex event processing (CEP), business process management (BPM), or API gateways. Many people still think about complex, heavyweight central brokers. However, microservices and containers are not only relevant for custom self-developed applications but are also a key requirement to make the middleware world more flexible, Agile, and automated.

Kai Wähner shares 10 lessons learned from building cloud-native microservices in the middleware world, including the concepts behind cloud native, choosing the right cloud platform, and when not to build microservices at all, and leads a live demo showing how to apply these lessons to real-world projects by leveraging Docker, CloudFoundry, and Kubernetes to realize cloud-native middleware microservices.

Slide Deck

Here is the slide deck “10 Lessons Learned from Building Cloud Native Middleware Microservices“:

Click on the button to load the content from www.slideshare.net.

Load content

Video Recordings / Live Demos

Two video recordings which demo how to apply the discussed lessons learned with middleware and open source frameworks:

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

When (Not) to Use Queues for Kafka?

Apache Kafka has long been the foundation for real-time data streaming. With the release of…

3 days ago

Diskless Kafka at FinTech Robinhood for Cost-Efficient Log Analytics and Observability

Diskless Kafka is transforming how fintech and financial services organizations handle observability and log analytics.…

1 week ago

Shift Left in Automotive: Real-Time Intelligence from Vehicle Telemetry with Data Streaming at Rivian

Rivian and Volkswagen, through their joint venture RV Tech, process high-frequency telemetry from connected vehicles…

2 weeks ago

Etihad Airways Makes Airline Operations Real-Time with Data Streaming

Airlines face constant pressure to deliver reliable service while managing complex operations and rising customer…

3 weeks ago

Stream Processing on the Mainframe with Apache Flink: Genius or a Glitch in the Matrix?

Running Apache Flink on a mainframe may sound surprising, but it is already happening and…

1 month ago

10 FinTech Predictions That Depend on Real Time Data Streaming

Financial services companies are moving from batch processing to real time data flow. A data…

2 months ago