Kafka Streams + H2O.ai + TensorFlow (Video Recording / Live Demo)

I do a lot of presentations these days at meetups and conferences with one focus: How to leverage Apache Kafka and Kafka Streams to apply analytic models (built with H2O, TensorFlow, DeepLearning4J and other frameworks) to scalable, mission-critical environments. As many attendees have asked me, I created a video recording about this talk (focusing on live demos).

I also see many Confluent customers talking about their challenges to deploy analytic models to a mission-critical, scalable production environment. This is a completely different story than “just” developing a great, accurate model in R or Python. Educating them how Apache Kafka and Kafka Streams can help here is a key task for me these days… 🙂 This leads to many very interesting and disrupting use cases! I will blog more about this in the next months. For example, I will show an example where I train a neural networks with the concept of autoencoders to build analytic models. Some use cases for this: Anomaly detection for predictive maintenance, fraud, customer churn, etc. These neural networks will then be deployed and monitored with Apache Kafka and its Streams API.

Abstract of the Session: Apache Kafka + Machine Learning

Intelligent real time applications are a game changer in any industry. This session explains how companies from different industries build intelligent real time applications. The first part of this session explains how to build analytic models with R, Python or Scala. No matter which language you favor, you can leverage open source machine learning / deep learning frameworks like TensorFlow, DeepLearning4J or H2O.ai. The second part discusses the deployment of these built analytic models to your own applications or microservices. Here you leverage the Apache Kafka cluster and Kafka’s Streams API instead of setting up a new, complex stream processing cluster. The session focuses on live demos. It also teaches lessons learned for executing analytic models in a highly scalable, mission-critical and performant way.

Key Takeaways for the Audience

  • Insights are hidden in Historical Data, e.g. on Big Data Platforms such as Hadoop
  • Machine Learning and Deep Learning find these Insights by building Analytics Models
  • Stream Processing uses these Models (without Redeveloping) to act in Real Time
  • See different open source frameworks for Machine Learning and Stream Processing like TensorFlow, DeepLearning4J or H2O.ai to build analytic models
  • Apache Kafka, its Streams API and Machine Learning can be combined to build, apply and monitor analytic models
  • Understand how to leverage Kafka Streams to use analytic models in your own streaming microservices. Learn best practices for building and deploying analytic models in real time leveraging the open source Apache Kafka Streams platform

Code Examples on Github (Java, Kafka Streams, TensorFlow, H2O.ai)

You can find the Java code examples and analytic models for H2O and TensorFlow in my Github project.

Just clone the repository and run “maven clean package”. Then take a look at the Unit Tests to understand how to apply analytic models with Apache Kafka’s Streams API.

Video Recoding: Apache Kafka + Kafka Streams + H2O.ai + TensorFlow

Finally, here we go with the video recording:

As always, I appreciate any comments (feedback, questions, criticism)… Have fun watching the video.

You can also see a corresponding slide deck:

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

Real-Time Data Sharing in the Telco Industry for MVNO Growth and Beyond with Data Streaming

The telecommunications industry is transforming rapidly as Telcos expand partnerships with MVNOs, IoT platforms, and…

2 hours ago

Fraud Detection in Mobility Services (Ride-Hailing, Food Delivery) with Data Streaming using Apache Kafka and Flink

Mobility services like Uber, Grab, and FREE NOW (Lyft) rely on real-time data to power…

2 days ago

Virta’s Electric Vehicle (EV) Charging Platform with Real-Time Data Streaming: Scalability for Large Charging Businesses

The rise of Electric Vehicles (EVs) demands a scalable, efficient charging network—but challenges like fluctuating…

1 week ago

Apache Kafka 4.0: The Business Case for Scaling Data Streaming Enterprise-Wide

Apache Kafka 4.0 represents a major milestone in the evolution of real-time data infrastructure. Used…

2 weeks ago

How Apache Kafka and Flink Power Event-Driven Agentic AI in Real Time

Agentic AI marks a major evolution in artificial intelligence—shifting from passive analytics to autonomous, goal-driven…

2 weeks ago

Shift Left Architecture at Siemens: Real-Time Innovation in Manufacturing and Logistics with Data Streaming

Industrial enterprises face increasing pressure to move faster, automate more, and adapt to constant change—without…

3 weeks ago