Comparison of Stream Processing Frameworks and Products

See how products, libraries, and frameworks that full under ‘streaming data analytics’ use cases are categorized and compared.

Streaming Analytics processes data in real time while it is in motion. This concept and technology emerged several years ago in financial trading, but it is growing increasingly important these days due to digitalization and Internet of Things (IoT). The following slide deck from a recent talk at a conference covers:

  • Real world success stories from different industries (Manufacturing, Retailing, Sports)
  • Alternative Frameworks and Products for Stream Processing
  • Complementary Relationship to Data Warehouse, Apache Hadoop, Statistics, Machine Learning, Open Source R, SAS, Matlab, etc.

Stream Processing Frameworks and Products

The following picture shows the key differences between frameworks (no matter if open source such as Apache Storm, Apache Flink, Apache Spark or closed source such as Amazon Kinesis) and products (such as TIBCO StreamBase / Live Datamart, IBM InfoSphere Streams, Software AG’s Apama).

Of course, you can implement everything by writing code and using one or more frameworks. However, besides several other benefits, the key differentiator of using a product is time to market. You can realize projects in weeks instead of months or even years. Delivering quickly is the number one priority of most enterprises these days in a world where the only constant is change!

I recommend that you choose one or two frameworks and one or two products to implement a proof of concept (POC); spend e.g. five days with each one to implement a streaming analytics use case, which includes integration of input feeds or sensors, correlation / sliding windows / patterns, simulation and testing, and a live user interface to monitor and act proactively. At the end, you can compare the results and decide which fits you best.

Fast Data and Streaming Analytics in the Era of Hadoop, R and Apache Spark

The following slide deck discusses the above topics in much more detail:

Click on the button to load the content from www.slideshare.net.

Load content

Parts of this (extensive) slide deck were used for talks at several international conferences such as JavaOne 2015 in San Francisco. I appreciate any feedback about the content to improve it continuously…If you want to learn more about Streaming Analytics and its relation to Big Data and Apache Hadoop, I recommend the following InfoQ article: Real-Time Stream Processing as Game Changer in a Big Data World with Hadoop and Data Warehouse.

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

Driving the Future: How Real-Time Data Streaming Is Powering Automotive Innovation

The automotive industry is rapidly shifting toward a software-defined, data-driven future. Real-time technologies like Apache…

4 days ago

Pinterest Fights Spam and Abuse with Kafka and Flink: A Deep Dive into the Guardian Rules Engine

Pinterest uses Apache Kafka and Flink to power Guardian, its real-time detection platform for spam,…

1 week ago

Building Agentic AI with Amazon Bedrock AgentCore and Data Streaming Using Apache Kafka and Flink

Agentic AI goes beyond chatbots. These are autonomous systems that observe, reason, and act—continuously and…

2 weeks ago

Inside FourKites Logistics Platform: Data Streaming for AI and End-to-End Visibility in the Supply Chain

Global supply chains face constant disruption. Trade conflicts, wars, inflation, and shifting regulations are making…

2 weeks ago

The Rise of Kappa Architecture in the Era of Agentic AI and Data Streaming

The shift from Lambda to Kappa architecture reflects the growing demand for unified, real-time data…

3 weeks ago

FinOps in Real Time: How Data Streaming Transforms Cloud Cost Management

FinOps bridges the gap between finance and engineering to control cloud spend in real time.…

4 weeks ago