Comparison: Data Preparation vs. Inline Data Wrangling in Machine Learning and Deep Learning Projects

I want to highlight a new presentation about Data Preparation in Data Science projects:

“Comparison of Programming Languages, Frameworks and Tools for Data Preprocessing and (Inline) Data Wrangling  in Machine Learning / Deep Learning Projects”

Data Preparation as Key for Success in Data Science Projects

A key task to create appropriate analytic models in machine learning or deep learning is the integration and preparation of data sets from various sources like files, databases, big data storages, sensors or social networks. This step can take up to 80% of the whole project.

This session compares different alternative techniques to prepare data, including extract-transform-load (ETL) batch processing (like Talend, Pentaho), streaming analytics ingestion (like Apache Storm, Flink, Apex, TIBCO StreamBase, IBM Streams, Software AG Apama), and data wrangling (DataWrangler, Trifacta) within visual analytics. Various options and their trade-offs are shown in live demos using different advanced analytics technologies and open source frameworks such as R, Python, Apache Hadoop, Spark, KNIME or RapidMiner. The session discusses how this is related to visual analytics tools (like TIBCO Spotfire). Therefore, it also shows best practices for how the data scientist and business analyst should work together to build good analytic models.

Key Takeaway: Inline Data Wrangling Within Visual Analytics Tooling

Key takeaways of this session:

–    Learn various options for preparing data sets to build analytic models
–    Understand the pros and cons and the targeted persona for each option
–    See different technologies and open source frameworks for data preparation
–    Understand the relation to visual analytics and streaming analytics, and how these concepts are actually leveraged to build the analytic model after data preparation

Slide Deck

The following shows the slide deck:

Click on the button to load the content from www.slideshare.net.

Load content

Video Recording: Data Preparation vs. (Inline) Data Wrangling

Here is the video recording:

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

10 FinTech Predictions That Depend on Real Time Data Streaming

Financial services companies are moving from batch processing to real time data flow. A data…

5 hours ago

Top Trends for Data Streaming with Apache Kafka and Flink in 2026

Each year brings new momentum to the data streaming space. In 2026, six key trends…

1 week ago

The Data Streaming Landscape 2026

Data streaming is now a core software category in modern data architecture. It powers real-time…

2 weeks ago

Life as a Lufthansa HON Circle Member: Inside the Ultimate Frequent Flyer Status

Reaching Lufthansa HON Circle status was both a personal milestone and a significant financial investment.…

2 weeks ago

CARIAD’s Unified Data Platform: A Data Streaming Automotive Success Story Behind Volkswagen’s Software-Defined Vehicles

The automotive industry transforms rapidly. Cars are now software-defined vehicles (SDVs) that demand constant, real-time…

3 weeks ago

Data Streaming Meets Lakehouse: Apache Iceberg for Unified Real-Time and Batch Analytics

Apache Iceberg is gaining momentum as the open table format of choice for modern data…

4 weeks ago