I do a lot of presentations these days at meetups and conferences about how to leverage Apache Kafka and Kafka Streams to apply analytic models (built with H2O, TensorFlow, DeepLearning4J and other frameworks) to scalable, mission-critical environments. As many attendees have asked me, I created a video recording about this talk (focusing on live demos).
Apache Kafka Streams to build Real Time Streaming Microservices. Apply Machine Learning / Deep Learning using Spark, TensorFlow, H2O.ai, etc. to add AI. Embed Kafka Streams into Java App, Docker, Kubernetes, Mesos, anything else.
After three great years at TIBCO Software, I move back to open source and join Confluent, the company behind the open source project Apache Kafka to build mission-critical, scalable infrastructures for messaging, integration and stream processsing. In this blog post, I want to share why I see the future for middleware and big data analytics in open source technologies, why I really like Confluent, what I will focus on in the next months, and why I am so excited about this next step in my career.
Comparison of Open Source IoT Integration Frameworks such as Eclipse Kura (+ Apache Camel), Node-RED, Flogo, Apache Nifi, StreamSets, and others… (slide and video recording)
Introduction to the Open Source IoT Integration Project Flogo to build very lightweight edge applications and microservices for cloud native containers / cloud platforms / serverless architectures.
Log Analytics is the right framework or tool to monitor for Distributed Microservices. Comparison of Open source, SaaS and Enteprrise Products. Plus relation to big data components such as Apache Hadoop / Spark.
Closed Big Data Loop: 1) Finding Insights with R, H20, Apache Spark MLlib, PMML and TIBCO Spotfire. 2) Putting Analytic Models into Action via Event Processing and Streaming Analytics.