Real-Time FinOps with Data Streaming using Apache Kafka and Flink
Read More

FinOps in Real Time: How Data Streaming Transforms Cloud Cost Management

FinOps bridges the gap between finance and engineering to control cloud spend in real time. However, many organizations still rely on delayed, batch-driven data pipelines that limit visibility and slow down decisions. This blog explores how Apache Kafka and Apache Flink enable real-time, governed FinOps by streaming cloud usage data as it happens. It covers the challenges of data governance, compliance, and cross-functional accountability—and how streaming architecture addresses them. Real-world examples from Bitvavo and SumUp show how financial services companies scale securely, build cost-aware teams, and improve agility using event-driven platforms.
Read More
Open RAN and Data Streaming with Apache Kafka and Flink in Telecom Industry for Network Analytics and Observability
Read More

Open RAN and Data Streaming: How the Telecom Industry Modernizes Network Infrastructure with Apache Kafka and Flink

Open RAN is transforming telecom by decoupling hardware and software to unlock flexibility, innovation, and cost savings. But to fully realize its potential, telcos need real-time data streaming for observability, automation, and AI. This post shows how Apache Kafka, Apache Flink, and a diskless data streaming platform like Confluent WarpStream help telco operators scale RAN data processing securely and cost-effectively.
Read More
FinTech Alpian using Data Streaming and Agentic AI with Apache Kafka in Switzerland Regulated Market
Read More

Agentic AI and RAG in Regulated FinTech with Apache Kafka at Alpian Bank

Regulated FinTech is transforming financial services by combining compliance with innovation. This post explores how real-time data streaming with Apache Kafka and Flink enables modern architecture, personalization, and AI integration—while maintaining strict governance. Alpian, a fully licensed Swiss digital bank, showcases how Agentic AI, RAG, and domain-driven design work together in a compliant, cloud-only environment.
Read More
Real Time AI for Mobile Gaming and eSports at MPL with Data Streaming using Apache Kafka and Flink
Read More

How MPL Uses Data Streaming to Lead in Mobile Gaming and eSports

Mobile Premier League (MPL) is a leading mobile eSports skill-based gaming platform with over 90 million users. To meet the demands of real-time personalization, fraud detection, and user engagement, MPL transitioned from traditional batch processing to a modern data streaming architecture powered by Apache Kafka, Apache Flink, and Confluent Cloud. This blog explores the architectural shift, key use cases—including real-time Machine Learning inference and feature orchestration—and the business outcomes achieved, such as increased trust, lower operational costs, and improved player retention. The MPL success story highlights the value of a data streaming platform in building responsive, intelligent, and secure gaming platforms.
Read More
Mainframe Modernization and Integration with Data Streaming using Apache Kafka IBM MQ IIDR CDC Precisely Qlik
Read More

Mainframe Integration with Data Streaming: Architecture, Business Value, Real-World Success

The mainframe is evolving—not fading. With cloud-native features, AI acceleration, and quantum-safe encryption, platforms like IBM z16 and z17 remain central to critical industries. But modern demands require real-time data access and system agility. Apache Kafka and Flink make this possible by streaming data bi-directionally between DB2, IMS, and MQ and cloud analytics platforms. This enables event-driven architectures without disrupting core systems. This post outlines proven strategies—offloading, integration, and replacement—and includes real-world examples across industries. The result: lower costs, faster innovation, and smarter use of legacy systems.
Read More
Durable Execution Engine with Restate Temporal DBOS vs Stream Processing with Kafka Streams Apache Flink Spark Structured Streaming
Read More

­­The Rise of the Durable Execution Engine (Temporal, Restate) in an Event-driven Architecture (Apache Kafka)

Durable execution engines like Temporal and Restate are redefining how developers orchestrate long-running, stateful workflows in distributed systems. Unlike traditional BPM tools focused on human-centric tasks, these engines automate machine-to-machine processes with built-in durability, retries, and fault-tolerant coordination. When integrated with event-driven platforms like Apache Kafka, they enable scalable, resilient architectures—handling complex business logic such as order processing, fraud detection, and multi-step transactions. This blog explores their capabilities, differences from stream processing tools like Apache Flink, Kafka Streams or Spark Structured Streaming, and the emerging role they play in modern enterprise infrastructure.
Read More
Agentic AI with Apache Kafka as Event Broker Combined with MCP and A2A Protocol
Read More

Agentic AI with the Agent2Agent Protocol (A2A) and MCP using Apache Kafka as Event Broker

Agentic AI is emerging as a powerful pattern for building autonomous, intelligent, and collaborative systems. To move beyond isolated models and task-based automation, enterprises need a scalable integration architecture that supports real-time interaction, coordination, and decision-making across agents and services. This blog explores how the combination of Apache Kafka, Model Context Protocol (MCP), and Google’s Agent2Agent (A2A) protocol forms the foundation for Agentic AI in production. By replacing point-to-point APIs with event-driven communication as the integration layer, enterprises can achieve decoupling, flexibility, and observability—unlocking the full potential of AI agents in modern enterprise environments.
Read More
Real Time Gaming with Apache Kafka Powers Dream11 Fantasy Sports
Read More

Powering Fantasy Sports at Scale: How Dream11 Uses Apache Kafka for Real-Time Gaming

Fantasy sports has evolved into a data-driven, real-time digital industry with high stakes and massive user engagement. At the heart of this transformation is Dream11, India’s leading fantasy sports platform, which relies on Apache Kafka to deliver instant updates, seamless gameplay, and trustworthy user experiences for over 230 million fans. This blog post explores how Dream11 leverages Kafka to meet extreme traffic demands, scale infrastructure efficiently, and maintain real-time responsiveness—even during the busiest moments of live sports.
Read More
Enterprise Application Integration with Confliuent and Databricks for Oracle SAP Salesforce Servicenow et al
Read More

Databricks and Confluent in the World of Enterprise Software (with SAP as Example)

Enterprise data lives in complex ecosystems—SAP, Oracle, Salesforce, ServiceNow, IBM Mainframes, and more. This article explores how Confluent and Databricks integrate with SAP to bridge operational and analytical workloads in real time. It outlines architectural patterns, trade-offs, and use cases like supply chain optimization, predictive maintenance, and financial reporting, showing how modern data streaming unlocks agility, reuse, and AI-readiness across even the most SAP-centric environments.
Read More
Confluent and Databricks for Data Integration and Stream Processing
Read More

Confluent Data Streaming Platform vs. Databricks Data Intelligence Platform for Data Integration and Processing

This blog explores how Confluent and Databricks address data integration and processing in modern architectures. Confluent provides real-time, event-driven pipelines connecting operational systems, APIs, and batch sources with consistent, governed data flows. Databricks specializes in large-scale batch processing, data enrichment, and AI model development. Together, they offer a unified approach that bridges operational and analytical workloads. Key topics include ingestion patterns, the role of Tableflow, the shift-left architecture for earlier data validation, and real-world examples like Uniper’s energy trading platform powered by Confluent and Databricks.
Read More