Fraud Prevention with Apache Kafka in Real Time in Financial Services and Banking
Read More

Fraud Prevention in Under 60 Seconds with Apache Kafka: How A Bank in Thailand is Leading the Charge

In the fast-paced world of finance, the ability to prevent fraud in real-time is not just a competitive advantage – it is a necessity. For one of the largest banks in Thailand Krungsri (Bank of Ayudhya), with its vast assets, loans, and deposits, the challenge of fraud prevention has taken center stage. This blog post explores how the bank is leveraging data streaming with Apache Kafka to detect and block fraudulent transactions in under 60 seconds to ensure the safety and trust of its customers.
Read More
One Apache Kafka Cluster Type Does NOT Fit All Use Cases
Read More

Apache Kafka Cluster Type Deployment Strategies

Organizations start their data streaming adoption with a single Apache Kafka cluster to deploy the first use cases. The need for group-wide data governance and security but different SLAs, latency, and infrastructure requirements introduce new Kafka clusters. Multiple Kafka clusters are the norm, not an exception. Use cases include hybrid integration, aggregation, migration, and disaster recovery. This blog post explores real-world success stories and cluster strategies for different Kafka deployments across industries.
Read More
Apache Iceberg Open Table Format for Data Lake Lakehouse Streaming wtih Kafka Flink Databricks Snowflake AWS GCP Azure
Read More

Apache Iceberg – The Open Table Format for Lakehouse AND Data Streaming

An open table format framework like Apache Iceberg is essential in the enterprise architecture to ensure reliable data management and sharing, seamless schema evolution, efficient handling of large-scale datasets and cost-efficient storage. This blog post explores market trends, adoption of table format frameworks like Iceberg, Hudi, Paimon, Delta Lake and XTable, and the product strategy of leading vendors of data platforms such as Snowflake, Databricks (Apache Spark), Confluent (Apache Kafka / Flink), Amazon Athena and Google BigQuery.
Read More
My Data Streaming Journey with Kafka and Flink - 7 Years at Confluent
Read More

My Data Streaming Journey with Kafka & Flink: 7 Years at Confluent

Time flies… I joined Confluent seven years ago when Apache Kafka was mainly used by a few tech giants and the company had ~100 employees. This blog post explores my data streaming journey, including Kafka becoming a de facto standard for over 100,000 organizations, Confluent doing an IPO on the NASDAQ stock exchange, 5000+ customers adopting a data streaming platform, and emerging new design approaches and technologies like data mesh, GenAI, and Apache Flink. I look at the past, present and future of my personal data streaming journey. Both, from the evolution of technology trends and the journey as a Confluent employee that started in a Silicon Valley startup and is now part of a global software and cloud company.
Read More
Google Apache Kafka for BigQuery GCP Cloud Service
Read More

When (Not) to Choose Google Managed Service for Apache Kafka?

Google announced its Apache Kafka for BigQuery cloud service at its conference Google Cloud Next 2024 in Las Vegas. Welcome to the data streaming club joining Amazon, Microsoft, IBM, Oracle, Confluent, and others. This blog post explores this new managed Kafka offering for GCP, reviews the current status of the data streaming landscape, and shares some criteria to evaluate when Kafka in general and Google Apache Kafka in particular should (not) be used.
Read More
The Past Present and Future of Stream Processing
Read More

The Past, Present and Future of Stream Processing

Stream processing has existed for decades. The adoption grows with open source frameworks like Apache Kafka and Flink in combination with fully managed cloud services. This blog post explores the past, present and future of stream processing, including the relation of machine learning and GenAI, streaming databases, and the integration between data streaming and data lakes with Apache Iceberg.
Read More
JavaScript Node JS Apache Kafka for Full Stack Data Streaming in Event Driven Architecture
Read More

JavaScript, Node.js and Apache Kafka for Full-Stack Data Streaming

JavaScript is a pivotal technology for web applications. With the emergence of Node.js, JavaScript became relevant for both client-side and server-side development, enabling a full-stack development approach with a single programming language. Both Node.js and Apache Kafka are built around event-driven architectures, making them naturally compatible for real-time data streaming. This blog post explores open-source JavaScript Clients for Apache Kafka and discusses the trade-offs and limitations of JavaScript Kafka producers and consumers compared to stream processing technologies such as Kafka Streams or Apache Flink.
Read More
Dish Wireless Cloud-native 5G Telco Network powered by Data Streaming with Apache Kafka
Read More

How Apache Kafka helps Dish Wireless building cloud-native 5G Telco Infrastructure

5G telco infrastructure provides the basic foundations of data movement and increasingly unlocks new capabilities for low latency and critical SLAs. Real-time data processing with data streaming using Apache Kafka enables innovation across industries. This blog post explores the success story of Dish Wireless and its cloud-native standalone 5G infrastructure leveraging data streaming.
Read More
Decentralized Data Mesh with Data Streaming in Financial Services and Banking
Read More

Decentralized Data Mesh with Data Streaming in Financial Services

Digital transformation requires agility and fast time to market as critical factors for success in any enterprise. The decentralization with a data mesh separates applications and business units into independent domains. Data sharing in real-time with data streaming helps to provide information in the proper context to the correct application at the right time. This blog post explores a case study from the financial services sector where a data mesh was built across countries for loosely coupled data sharing but standardized enterprise-wide data governance.
Read More