Framework and Product Comparison for Big Data Log Analytics and ITOA

Slide deck from OOP 2016: Comparison of Frameworks and Products for Big Data Log Analytics and ITOA, e.g. Open Source ELK, TIBCO LogLogic / Unity, Splunk, Papertrail; Relation to Hadoop is also discussed.

In February 2016, I presented a brand new talk at OOP in Munich: “Comparison of Frameworks and Tools for Big Data Log Analytics and IT Operations Analytics”. The focus of the talk is to discuss different open source frameworks, SaaS cloud offerings and enterprise products for analyzing big masses of distributed log events. This topic is getting much more traction these days with the emerging architecture concept of Microservices.

Key Take-Aways

  • Log Analytics enables IT Operations Analytics for Machine Data
  • Correlation of Events is the Key for Added Business Value
  • Log Management is complementary to other Big Data Components

Log Management with Papertrail, ELK Stack, TIBCO LogLogic, Splunk, etc.

Log Management is a mature concept since many years; used for troubleshooting, root cause analysis, and solving security issues of devices such as web servers, firewalls, routers, databases, etc. In the meantime, it is also used for analyzing applications and distributed deployments using SOA or Microservices architectures.

The slide deck compares different solutions for log management:


IT Operations Analytics (ITOA) with TIBCO Unity

IT Operations Analytics is a new, very young market growing strongly (100% year-by-year, according to Gartner). In contrary to Log Management, it does not just focus on analyzing historical data, but also enables to make complex correlations of distributed data to allow predictive analytics in (near) real time. TIBCO Unity is a product heading into this direction. You can integrate log data, but also real time events (e.g. via TIBCO Hawk) to enable monitoring, analysis and complex correlation of distributed Microserices.

What about Apache Hadoop versus Log Management and ITOA?

Why not use just Apache Hadoop? You can also store and analyze all data on its cluster! Why not just use Log Collectors (such as Apache Flume) and send data directly to Hadoop without Log Analytics “in the middle”?

Here are some reasons… Log Management and ITOA tools

  • are an integrated solution for data analysis (tooling, consulting, support)
  • are built exactly for these use cases
  • involve data indexing, data processing (querying) and data visualization by means of dashboards and other tools out-of-the-box
  • offer easy-of-use tooling and allow fast time-to-market / low TCO

The following graphic shows the different concepts and when they are usually used:


Having said that, a better Hadoop integration is possible, nevertheless! It might make sense to leverage both together: The great tooling for Log Management, plus the Hadoop storage with very high scalability for really BIG data. For example, TIBCO Unity uses Apache Kafka under the hood to support processing and scaling millions of messages. Thus, integration with Hadoop storage might be possible in a future release… 🙂


Finally, here is my slide deck:

Click on the button to load the content from

Load content

As always, I appreciate any questions or feedback!

Dont‘ miss my next post. Subscribe!

We don’t spam! Read our privacy policy for more info.
If you have issues with the registration, please try a private browser tab / incognito mode. If it doesn't help, write me:

Leave a Reply
You May Also Like