Apache Kafka Streams to build Real Time Streaming Microservices. Apply Machine Learning / Deep Learning using Spark, TensorFlow, H2O.ai, etc. to add AI. Embed Kafka Streams into Java App, Docker, Kubernetes, Mesos, anything else.
Data Preparation: Comparison of Programming Languages, Frameworks and Tools for Data Preprocessing and (Inline) Data Wrangling in Machine Learning / Deep Learning Projects.
Several tools are available on the market for Visual Analytics and Data Discovery. Three of the most well known options are Tableau, Qlik and TIBCO Spotfire. This post shows important characteristics to compare and evaluate these tools.
Closed Big Data Loop: 1) Finding Insights with R, H20, Apache Spark MLlib, PMML and TIBCO Spotfire. 2) Putting Analytic Models into Action via Event Processing and Streaming Analytics.
Data Warehouses have existed for many years in almost every company. While they are still as good and relevant for the same use cases as they were 20 years ago, they cannot solve new, existing challenges and those sure to come in a ever-changing digital world. The upcoming sections will clarify when to still use a Data Warehouse and when to use a modern Live Datamart instead.