Real-Time Data Sharing in the Telco Industry for MVNO Growth and Beyond with Data Streaming

Data Sharing for MVNO Growth and Beyond with Data Streaming in the Telco Industry
The telecommunications industry is transforming rapidly as Telcos expand partnerships with MVNOs, IoT platforms, and enterprise customers. Traditional batch-driven architectures can no longer meet the demands for real-time, secure, and flexible data access. This blog explores how real-time data streaming technologies like Apache Kafka and Flink, combined with hybrid cloud architectures, enable Telcos to build trusted, scalable data ecosystems. It covers the key components of a modern data sharing platform, critical use cases across the Telco value chain, and how policy-driven governance and tailored data products drive new business opportunities, operational excellence, and regulatory compliance. Mastering real-time data sharing positions Telcos to turn raw events into strategic advantage faster and more securely than ever before.

The telecommunications industry is entering a new era. Partnerships with MVNOs, IoT platforms, and enterprise customers demand flexible, secure, and real-time access to network and customer data. Traditional batch-driven architectures are no longer sufficient. Instead, real-time data streaming combined with policy-driven data sharing provides a powerful foundation for building scalable data products for internal and external consumers. A modern Telco must manage data collection, processing, governance, data sharing, and distribution with the same rigor as its core network services. Leading Telcos now operate centralized real-time data streaming platforms to integrate and share network events, subscriber information, billing records, and telemetry from thousands of data sources across the edge and core networks.

Data Sharing for MVNO Growth and Beyond with Data Streaming in the Telco Industry

Join the data streaming community and stay informed about new blog posts by subscribing to my newsletter and follow me on LinkedIn or X (former Twitter) to stay in touch. And download my free book about data streaming use cases, including a dedicated chapter about the telco industry.

Data Streaming in the Telco Industry

Telecommunications networks generate vast amounts of data every second. Every call, message, internet session, device interaction, and network event produces valuable information. Historically, much of this data was processed in batches — often hours or even days after it was collected. This delayed model no longer meets the needs of modern Telcos, partners, and customers.

Data streaming transforms how Telcos handle information. Instead of storing and processing data later, it is ingested, processed, and acted upon in real time as it is generated. This enables continuous intelligence across all parts of the network and business.

Learn more about “The Top 20 Problems with Batch Processing (and How to Fix Them with Data Streaming)“.

Business Value of Data Streaming in the Telecom Sector

Key benefits of data streaming for Telcos include:

  • Real-Time Visibility: Immediate insight into network health, customer behavior, fraud attempts, and service performance.
  • Operational Efficiency: Faster detection and resolution of issues reduces downtime, improves customer satisfaction, and lowers operating costs.
  • New Revenue Opportunities: Real-time data enables new services such as dynamic pricing, personalized offers, and proactive customer support.
  • Enhanced Security and Compliance: Immediate anomaly detection and instant auditability support regulatory requirements and protect against cyber threats.

Technologies like Apache Kafka and Apache Flink are now core components of Telco IT architectures. They allow Telcos to integrate massive, distributed data flows from radio access networks (RAN), 5G core systems, IoT ecosystems, billing and support platforms, and customer devices.

Modern Telcos use data streaming to not only improve internal operations but also to deliver trusted, secure, and differentiated services to external partners such as MVNOs, IoT platforms, and enterprise customers.

Learn More about Data Streaming in Telco

Learn more about data streaming in the telecommunications sector:

Data streaming is not an allrounder to solve every problem. Hence, a modern enterprise architecture combines data streaming with purpose-built telco-specific platforms and SaaS solutions, and data lakes/warehouses/lakehouses like Snowflake or Databricks for the analytical workloads.

I already wrote about the combination of data streaming platforms like Confluent together with Snowflake and Microsoft Fabric. A blog series about data streaming with Confluent combined with AI and analytics using Databricks is coming right after this blog post here.

Building a Real-Time Data Sharing Platform in the Telco Industry with Data Streaming

By mastering real-time data streaming, Telcos unlock the ability to share valuable insights securely and efficiently with internal divisions, IoT platforms, and enterprise customers.

Mobile Virtual Network Operators (MVNOs) — companies that offer mobile services without owning their own network infrastructure — are an equally important group of consumers. As an MVNO delivers niche services, competitive pricing, and tailored customer experiences, real-time data sharing becomes essential to support their growth and enable differentiation in a highly competitive market.

Real-Time Data Sharing Between Organizations Is Necessary in the Telco Industry

A strong real-time data sharing platform in the telco industry integrates multiple types of components and stakeholders, organized into four critical areas:

Data Sources

A real-time data platform aggregates information from a wide range of technical systems across the Telco infrastructure.

  • Radio Access Network (RAN) Metrics: Capture real-time information about signal quality, handovers, and user session performance.
  • 5G Core Network Functions: Manage traffic flows, session lifecycles, and device mobility through UPF, SMF, and AMF components.
  • Operational Support Systems (OSS) and Business Support Systems (BSS): Provide data for service assurance, provisioning, customer management, and billing processes.
  • IoT Devices: Send continuous telemetry data from connected vehicles, industrial assets, healthcare monitors, and consumer electronics.
  • Customer Premises Equipment (CPE): Supply performance and operational data from routers, gateways, modems, and set-top boxes.
  • Billing Events: Stream usage records, real-time charging information, and transaction logs to support accurate billing.
  • Customer Profiles: Update subscription plans, user preferences, device types, and behavioral attributes dynamically.
  • Security Logs: Capture authentication events, threat detections, network access attempts, and audit trail information.

Stream Processing

Stream processing technologies ensure raw events are turned into enriched, actionable data products as they move through the system.

  • Real-Time Data Ingestion: Continuously collect and process events from all sources with low latency and high reliability.
  • Data Aggregation and Enrichment: Transform raw network, billing, and device data into structured, valuable datasets.
  • Actionable Data Products: Create enriched, ready-to-consume information for operational and business use cases across the ecosystem.

Data Governance

Effective governance frameworks guarantee that data sharing is secure, compliant, and aligned with commercial agreements.

  • Policy-Based Access Control: Enforce business, regulatory, and contractual rules on how data is shared internally and externally.
  • Data Protection Techniques: Apply masking, anonymization, and encryption to secure sensitive information at every stage.
  • Compliance Assurance: Meet regulatory requirements like GDPR, CCPA, and telecom-specific standards through real-time monitoring and enforcement.

Data Consumers

Multiple internal and external stakeholders rely on tailored, policy-controlled access to real-time data streams to achieve business outcomes.

  • MVNO Partners: Consume real-time network metrics, subscriber insights, and fraud alerts to offer better customer experiences and safeguard operations.
  • Internal Telco Divisions: Use operational data to improve network uptime, optimize marketing initiatives, and detect revenue leakage early.
  • IoT Platform Services: Rely on device telemetry and mobility data to improve fleet management, predictive maintenance, and automated operations.
  • Enterprise Customers: Integrate real-time network insights and SLA compliance monitoring into private network and corporate IT systems.
  • Regulatory and Compliance Bodies: Access live audit streams, security incident data, and privacy-preserving compliance reports as required by law.

Key Data Products Driving Value for Data Sharing in the Telco Industry

In modern Telco architectures, data products act as the building blocks for a data mesh approach, enabling decentralized ownership, scalable integration with microservices, and direct access for consumers across the business and partner ecosystem.

Data Sharing in Telco with a Data Mesh and Data Products using Data Streaming with Apache Kafka

The right data products accelerate time-to-insight and enable additional revenue streams. Leading Telcos typically offer:

  • Network Quality Metrics: Monitoring service degradation, latency spikes, and coverage gaps continuously.
  • Customer Behavior Analytics: Tracking app usage, mobility patterns, device types, and engagement trends.
  • Fraud and Anomaly Detection Feeds: Capturing unusual usage, SIM swaps, or suspicious roaming activities in real time.
  • Billing and Charging Data Streams: Delivering session records and consumption details instantly to billing systems or MVNO partners.
  • Device Telemetry and Health Data: Providing operational status and error signals from smartphones, CPE, and IoT devices.
  • Subscriber Profile Updates: Streaming changes in service plans, device upgrades, or user preferences.
  • Location-Aware Services Data: Powering geofencing, smart city applications, and targeted marketing efforts.
  • Churn Prediction Models: Scoring customer retention risks based on usage behavior and network experience.
  • Network Capacity and Traffic Forecasts: Helping optimize resource allocation and investment planning.
  • Policy Compliance Monitoring: Ensuring real-time validation of internal and external SLAs, privacy agreements, and regulatory requirements.

These data products can be offered via APIs, secure topics, or integrated into partner platforms for direct consumption.

How Each Data Consumer Gains Strategic Value

Real-time data streaming empowers each data consumer within the Telco ecosystem to achieve specific business outcomes, drive operational excellence, and unlock new growth opportunities based on continuous, trusted insights.

Internal Telco Divisions

Real-time insights into network behavior allow proactive incident management and customer support. Marketing teams optimize campaigns based on live subscriber data, while finance teams minimize revenue leakage by tracking billing and usage patterns instantly.

MVNO Partners

Access to live network quality indicators helps MVNOs improve customer satisfaction and loyalty. Real-time fraud monitoring protects against financial losses. Tailored subscriber insights enable MVNOs to offer personalized plans and upsells based on actual usage.

IoT Platform Services

Large-scale telemetry streaming enables better device management, predictive maintenance, and operational automation. Real-time geolocation data improves logistics, fleet management, and smart infrastructure performance. Event-driven alerts help detect and resolve device malfunctions rapidly.

Enterprise Customers

Private 5G networks and managed services depend on live analytics to meet SLA obligations. Enterprises integrate real-time network telemetry into their own systems for smarter decision-making. Data-driven optimizations ensure higher uptime, better resource utilization, and enhanced customer experiences.

Building a Trusted Data Ecosystem for Telcos with Real-Time Streaming and Hybrid Cloud

Real-time data sharing is no longer a luxury for Telcos — it is a competitive necessity. A successful platform must balance openness with control, ensuring that every data exchange respects privacy, governance, and commercial boundaries.

Hybrid cloud architectures play a critical role in this evolution. They enable Telcos to process, govern, and share real-time data across on-premises infrastructure, edge environments, and public clouds seamlessly. By combining the flexibility of cloud-native services with the security and performance of on-premises systems, hybrid cloud ensures that data remains accessible, scalable, cost-efficient and compliant wherever it is needed.

Hybrid 5G Telco Architecture with Data Streaming with AWS Cloud and Confluent Edge and Cloud

By deploying scalable data streaming solutions across a hybrid cloud environment, Telcos enable secure, real-time data sharing with MVNOs, IoT platforms, enterprise customers, and internal business units. This empowers critical use cases such as dynamic quality of service monitoring, real-time fraud detection, customer behavior analytics, predictive maintenance for connected devices, and SLA compliance reporting — all without compromising performance or regulatory requirements.

The future of telecommunications belongs to those who implement real-time data streaming and controlled data sharing — turning raw events into strategic advantage faster, more securely, and more effectively than ever before.

How do you share data in your organization? Do you already leverage data streaming or still operate in batch mode? Join the data streaming community and stay informed about new blog posts by subscribing to my newsletter and follow me on LinkedIn or X (former Twitter) to stay in touch. And make sure to download my free book about data streaming use cases.

Dont‘ miss my next post. Subscribe!

We don’t spam! Read our privacy policy for more info.
If you have issues with the registration, please try a private browser tab / incognito mode. If it doesn't help, write me: kontakt@kai-waehner.de

You May Also Like
How to do Error Handling in Data Streaming
Read More

Error Handling via Dead Letter Queue in Apache Kafka

Recognizing and handling errors is essential for any reliable data streaming pipeline. This blog post explores best practices for implementing error handling using a Dead Letter Queue in Apache Kafka infrastructure. The options include a custom implementation, Kafka Streams, Kafka Connect, the Spring framework, and the Parallel Consumer. Real-world case studies show how Uber, CrowdStrike, Santander Bank, and Robinhood build reliable real-time error handling at an extreme scale.
Read More