The Future of AI-Ready Integration with Data Streaming powered by Apache Kafka and Flink
Read More

How Siemens, SAP, and Confluent Shape the Future of AI Ready Integration – Highlights from the Rojo Event in Amsterdam

Many enterprises want to become AI ready but are limited by slow, batch based integration platforms that prevent real time insight and automation. The Rojo “Future of Integration” event in Amsterdam addressed this challenge by bringing together Siemens, SAP, Rojo, and Confluent to show how event driven and intelligent data architectures solve it. The discussions revealed how data streaming with Apache Kafka and Flink complements traditional integration tools, enabling continuous data flow, scalability, and the foundation for AI and automation. This blog summarizes the key learnings from the event, including my presentation “AI Ready Integration with Data Streaming,” and insights from Siemens, SAP, and Rojo on how enterprises can build truly connected, AI ready ecosystems.
Read More
The Rise of Kappa Architecture in the Age of Agentic AI with Data Streaming using Apache Kafka and Flink
Read More

The Rise of Kappa Architecture in the Era of Agentic AI and Data Streaming

The shift from Lambda to Kappa architecture reflects the growing demand for unified, real-time data pipelines that serve both analytical and operational needs. With the rise of Agentic AI and streaming-first systems, Kappa—powered by Apache Kafka and Apache Flink—delivers low-latency, event-driven infrastructure that supports modern applications, from scalable data products to autonomous AI agents. Open table formats and Shift Left principles further establish Kappa as the foundation for consistent, governed, and future-ready data platforms.
Read More
Enterprise Application Integration with Confliuent and Databricks for Oracle SAP Salesforce Servicenow et al
Read More

Databricks and Confluent in the World of Enterprise Software (with SAP as Example)

Enterprise data lives in complex ecosystems—SAP, Oracle, Salesforce, ServiceNow, IBM Mainframes, and more. This article explores how Confluent and Databricks integrate with SAP to bridge operational and analytical workloads in real time. It outlines architectural patterns, trade-offs, and use cases like supply chain optimization, predictive maintenance, and financial reporting, showing how modern data streaming unlocks agility, reuse, and AI-readiness across even the most SAP-centric environments.
Read More
Confluent and Databricks for Data Integration and Stream Processing
Read More

Confluent Data Streaming Platform vs. Databricks Data Intelligence Platform for Data Integration and Processing

This blog explores how Confluent and Databricks address data integration and processing in modern architectures. Confluent provides real-time, event-driven pipelines connecting operational systems, APIs, and batch sources with consistent, governed data flows. Databricks specializes in large-scale batch processing, data enrichment, and AI model development. Together, they offer a unified approach that bridges operational and analytical workloads. Key topics include ingestion patterns, the role of Tableflow, the shift-left architecture for earlier data validation, and real-world examples like Uniper’s energy trading platform powered by Confluent and Databricks.
Read More
Electric Vehicle (EV) Charging - Automotive and ESG with Data Streaming at Virta
Read More

Virta’s Electric Vehicle (EV) Charging Platform with Real-Time Data Streaming: Scalability for Large Charging Businesses

The rise of Electric Vehicles (EVs) demands a scalable, efficient charging network—but challenges like fluctuating demand, complex billing, and real-time availability updates must be addressed. Virta, a global leader in smart EV charging, is tackling these issues with real-time data streaming. By leveraging Apache Kafka and Confluent Cloud, Virta enhances energy distribution, enables predictive maintenance, and supports dynamic pricing. This approach optimizes operations, improves user experience, and drives sustainability. Discover how real-time data streaming is shaping the future of EV charging and enabling intelligent, scalable infrastructure.
Read More
Apache Flink - Overkill for Simple Stateless Stream Processing
Read More

Apache Flink: Overkill for Simple, Stateless Stream Processing and ETL?

Discover when Apache Flink is the right tool for your stream processing needs. Explore its role in stateful and stateless processing, the advantages of serverless Flink SaaS solutions like Confluent Cloud, and how it supports advanced analytics and real-time data integration together with Apache Kafka. Dive into the trade-offs, deployment options, and strategies for leveraging Flink effectively across cloud, on-premise, and edge environments, and when to use Kafka Streams or Single Message Transforms (SMT) within Kafka Connect for ETL instead of Flink.
Read More
Virgin Australia Journey with Apache Kafka - Innovation in the Airline and Aviation Industry
Read More

Virgin Australia’s Journey with Apache Kafka: Driving Innovation in the Airline Industry

Data streaming with Apache Kafka and Flink is transforming the airline industry, enabling real-time efficiency and exceptional customer experiences. Virgin Australia exemplifies this innovation to modernize its Flight State Engine and overhaul its loyalty program. By embracing event-driven architecture, the airline has improved operational reliability and personalized services, setting a benchmark for aviation digitalization.
Read More
Airport and Airlines Digitalization with Data Streaming using Apache Kafka and Flink
Read More

The Digitalization of Airport and Airlines with IoT and Data Streaming using Kafka and Flink

The vision for a digitalized airport includes seamless passenger experiences, optimized operations, consistent integration with airlines and retail stores, and enhanced security through the use of advanced technologies like IoT, AI, and real-time data analytics. This blog post shows the relevance of data streaming with Apache Kafka and Flink in the aviation industry to enable data-driven business process automation and innovation while modernizing the IT infrastructure with cloud-native hybrid cloud architecture.
Read More
Snowflake and Apache Kafka Data Integration Anti Patterns Zero Reverse ETL
Read More

Snowflake Integration Patterns: Zero ETL and Reverse ETL vs. Apache Kafka

Snowflake is a leading cloud-native data warehouse. Integration patterns include batch data integration, Zero ETL and near real-time data ingestion with Apache Kafka. This blog post explores the different approaches and discovers its trade-offs. Following industry recommendations, it is suggested to avoid anti-patterns like Reverse ETL and instead use data streaming to enhance the flexibility, scalability, and maintainability of enterprise architecture.
Read More
Read More

Apache Kafka + Vector Database + LLM = Real-Time GenAI

Generative AI (GenAI) enables advanced AI use cases and innovation but also changes how the enterprise architecture looks like. Large Language Models (LLM), Vector Databases, and Retrieval Augmentation Generation (RAG) require new data integration patterns. Data streaming with Apache Kafka and Apache Flink processes incoming data sets in real-time at scale, connects various platforms, and enables decoupled data products.
Read More