Data Warehouse vs Data Lake vs Data Streaming Comparison
Read More

Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?

The concepts and architectures of a data warehouse, a data lake, and data streaming are complementary to solving business problems. Unfortunately, the underlying technologies are often misunderstood, overused for monolithic and inflexible architectures, and pitched for wrong use cases by vendors. Let’s explore this dilemma in a blog series. This is part 1: Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?
Read More
When not to use Apache Kafka
Read More

When NOT to use Apache Kafka?

Apache Kafka is the de facto standard for event streaming to process data in motion. This blog post explores when NOT to use Apache Kafka. What use cases are not a good fit for Kafka? What limitations does Kafka have? How to qualify Kafka out as it is not the right tool for the job?
Read More
Stream Exchange for Data Sharing with Apache Kafka in a Data Mesh
Read More

Streaming Data Exchange with Kafka and a Data Mesh in Motion

Data Mesh is a new architecture paradigm that gets a lot of buzzes these days. This blog post looks into this principle deeper to explore why no single technology is the perfect fit to build a  Data Mesh. Examples show why an open and scalable decentralized real-time platform like Apache Kafka is often the heart of the Data Mesh infrastructure, complemented by many other data platforms to solve business problems.
Read More
Serverless Kafka for Data in Motion as Rescue for Data at Rest in the Data Lake
Read More

Serverless Kafka in a Cloud-native Data Lake Architecture

Apache Kafka became the de facto standard for processing data in motion. Kafka is open, flexible, and scalable. Unfortunately, the latter makes operations a challenge for many teams. Ideally, teams can use a serverless Kafka SaaS offering to focus on business logic. However, hybrid scenarios require a cloud-native platform that provides automated and elastic tooling to reduce the operations burden. This blog post explores how to leverage cloud-native and serverless Kafka offerings in a hybrid cloud architecture. We start from the perspective of data at rest with a data lake and explore its relation to data in motion with Kafka.
Read More

Difference between a Data Warehouse and a Live Datamart?

Data Warehouses have existed for many years in almost every company. While they are still as good and relevant for the same use cases as they were 20 years ago, they cannot solve new, existing challenges and those sure to come in a ever-changing digital world. The upcoming sections will clarify when to still use a Data Warehouse and when to use a modern Live Datamart instead.
Read More

Comparison of Stream Processing and Streaming Analytics Alternatives (Apache Storm, Spark, IBM InfoSphere Streams, TIBCO StreamBase, Software AG Apama)

The article discusses what stream processing is, how it fits into a big data architecture with Hadoop and a data warehouse (DWH), when stream processing makes sense, and what technologies and products you can choose from. Comparison of open source and proprietary stream processing / streaming analytics alternatives: Apache Storm, Spark, IBM InfoSphere Streams, TIBCO StreamBase, Software AG’s Apama, etc.
Read More