Real-Time Supply Chain Control Tower with Apache Kafka
Read More

A Real-Time Supply Chain Control Tower powered by Kafka

A modern supply chain requires just-in-time production, global logistics, and complex manufacturing processes. This blog post explores a solution that ingests all information flows into a unified central nervous system. The idea of the Supply Chain Control Tower becomes a reality: An integrated data cockpit with real-time access to all levels and systems of the supply chain.
Read More
Real-Time Sports and Gaming with Data Streaming powered by Apache Kafka
Read More

Reimagine sports and gaming with data streaming: A table tennis success story built with Apache Kafka

The sports world is changing. Digitalization is everywhere. Cameras and sensors analyze matches. Stadiums get connected and incorporate mobile apps and location-based services. Players use social networks to influence and market themselves and consumer products. Real-time data processing is crucial for most innovative sports use cases. This blog post explores how data streaming with Apache Kafka helps reimagine the sports industry, showing a concrete example from the worldwide table tennis organization.
Read More
Is Amazon MSK Serverless for Apache Kafka a Self-Driving Car or just a Car Engine
Read More

When NOT to choose Amazon MSK Serverless for Apache Kafka?

Apache Kafka became the de facto standard for data streaming. Various cloud offerings emerged and improved in the last years. Amazon MSK Serverless is the latest Kafka product from AWS. This blog post looks at its capabilities to explore how it relates to “the normal” partially managed Amazon MSK, when the serverless version is a good choice, and when other fully-managed cloud services like Confluent Cloud are the better option.
Read More
The Heart of the Data Mesh Beats Real Time with Apache Kafka
Read More

The Heart of the Data Mesh Beats Real-Time with Apache Kafka

If there were a buzzword of the hour, it would undoubtedly be “data mesh”! This new architectural paradigm unlocks analytic and transactional data at scale and enables rapid access to an ever-growing number of distributed domain datasets for various usage scenarios. The data mesh addresses the most common weaknesses of the traditional centralized data lake or data platform architecture. And the heart of a decentralized data mesh infrastructure must be real-time, reliable, and scalable. Learn how the de facto standard for data streaming, Apache Kafka, plays a crucial role in building a data mesh.
Read More
Best Practices for Data Analytics with AWS Azure Googel BigQuery Spark Kafka Confluent Databricks
Read More

Best Practices for Building a Cloud-Native Data Warehouse or Data Lake

The concepts and architectures of a data warehouse, a data lake, and data streaming are complementary to solving business problems. Unfortunately, the underlying technologies are often misunderstood, overused for monolithic and inflexible architectures, and pitched for wrong use cases by vendors. Let’s explore this dilemma in a blog series. This is part 5: Best Practices for Building a Cloud-Native Data Warehouse or Data Lake.
Read More
Case Studies for Cloud Native Analytics with Data Warehouse Data Lake Data Streaming Lakehouse
Read More

Case Studies: Cloud-native Data Streaming for Data Warehouse Modernization

The concepts and architectures of a data warehouse, a data lake, and data streaming are complementary to solving business problems. Unfortunately, the underlying technologies are often misunderstood, overused for monolithic and inflexible architectures, and pitched for wrong use cases by vendors. Let’s explore this dilemma in a blog series. This is part 4: Case Studies for cloud-native data streaming and data warehouses.
Read More
Data Warehouse vs Data Lake vs Data Streaming Comparison
Read More

Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?

The concepts and architectures of a data warehouse, a data lake, and data streaming are complementary to solving business problems. Unfortunately, the underlying technologies are often misunderstood, overused for monolithic and inflexible architectures, and pitched for wrong use cases by vendors. Let’s explore this dilemma in a blog series. This is part 1: Data Warehouse vs. Data Lake vs. Data Streaming – Friends, Enemies, Frenemies?
Read More
Request Response Data Exchange with Apache Kafka vs CQRS and Event Sourcing
Read More

When to use Request-Response with Apache Kafka?

How can I do request-response communication with Apache Kafka? That’s one of the most common questions I get regularly. This blog post explores when (not) to use this message exchange pattern, the differences between synchronous and asynchronous communication, the pros and cons compared to CQRS and event sourcing, and how to implement request-response within the data streaming infrastructure.
Read More
Kafka in Healthcare - Open API and Omnichannel Data Streaming
Read More

Open API and Omnichannel with Apache Kafka in Healthcare

IT modernization and innovative new technologies change the healthcare industry significantly. This blog series explores how data streaming with Apache Kafka enables real-time data processing and business process automation. Real-world examples show how traditional enterprises and startups increase efficiency, reduce cost, and improve the human experience across the healthcare value chain, including pharma, insurance, providers, retail, and manufacturing. This is part five: Open API and Omnichannel. Examples include Care.com and Invitae.
Read More
JMS Message Queue vs Apache Kafka Comparison
Read More

Comparison: JMS Message Queue vs. Apache Kafka

Comparing JMS-based message queue (MQ) infrastructures and Apache Kafka-based data streaming is a widespread topic. Unfortunately, the battle is an apple-to-orange comparison that often includes misinformation and FUD from vendors. This blog post explores the differences, trade-offs, and architectures of JMS message brokers and Kafka deployments. Learn how to choose between JMS brokers like IBM MQ or RabbitMQ and open-source Kafka or serverless cloud services like Confluent Cloud.
Read More